14 Μαρτίου 2010

Η Κάθετη Αφαίρεση

Με την κάθετη αφαίρεση είμαστε όλοι εξοικειωμένοι. Τόσο που αδυνατούμε να καταλάβουμε τις δυσκολίες που συναντούν οι μαθητές της Β΄ Δημοτικού όταν την πρωτοσυναντούν. Ας πάρουμε για παράδειγμα την ακόλουθη αφαίρεση:

 53
-19

Τα παιδιά αδυνατούν να κατανοήσουν για ποιον λόγο δανειζόμαστε μια δεκάδα και το 3 στη θέση των μονάδων γίνεται 13 και γιατί στη συνέχεια το 1 στη θέση των δεκάδων γίνεται 2. Σε μας φαίνεται αυτονόητο αλλά, αν το σκεφτούμε λίγο καλύτερα, απλώς έχουμε εξοικειωθεί με τη διαδικασία. Στην πραγματικότητα δεν καταλαβαίνουμε τι κάνουμε. Πώς μπορούμε να ξεπεράσουμε αυτήν την δυσκολία;

Mε τη γυναίκα μου, που διδάσκει φέτος στη Β΄ Δημοτικού, προτείνουμε δύο τρόπους. Η ουσία είναι η ίδια, ο τρόπος διδασκαλίας αλλάζει. Στον πρώτο τρόπο η διδασκαλία είναι άμεση (ο δάσκαλος δηλαδή εξηγεί και οι μαθητές παθητικά παρατηρούν). Τα βήματα είναι τα εξής:

Α) Παρουσιάζουμε με κυβάκια τον αριθμό 53 δηλαδή με πέντε δεκάδες και τρεις μονάδες, ενώ δίπλα μας έχουμε ένα παιδί που έχει αρκετά κυβάκια σε ένα κουτί και τους λέμε ότι είναι ο γείτονάς μας.

Β) Λέμε στους μαθητές ότι θέλουμε να υπολογίσουμε το 53 – 19 κάθετα.

Γ) Τους εξηγούμε πως στην κάθετη αφαίρεση ξεκινούμε από τις μονάδες (μ’ αυτό είναι ήδη εξοικειωμένοι λόγω της διδασκαλίας της κάθετης πρόσθεσης που έχει προηγηθεί). Επειδή δεν μπορούμε να αφαιρέσουμε από το 3 το 9 δανειζόμαστε 10 κυβάκια από τον γείτονά μας και έτσι τώρα η αφαίρεση μετατρέπεται σε 13 – 9 = 4.

Δ) Μετά πάμε στις δεκάδες. Εδώ αφαιρούμε τη 1 που πρέπει έτσι κι αλλιώς να αφαιρέσουμε και ακόμα 1 γιατί θέλουμε να επιστρέψουμε στον γείτονα τα δέκα κυβάκια που μας δάνεισε.

Στον δεύτερο τρόπο η διδασκαλία είναι διερευνητική-ανακαλυπτική. Οι μαθητές δηλαδή πρέπει μόνοι τους να ανακαλύψουν όλη τη διαδικασία της κάθετης αφαίρεσης. Για να μπορέσουν τα δευτεράκια να το πετύχουν πρέπει να γίνει κάποια προεργασία. Δύο πράγματα πρέπει να προηγηθούν:

Α) Να μάθουν τον αγγλοσαξονικό τρόπο αφαίρεσης.
Ποιος είναι ο αγγλοσαξονικός τρόπος αφαίρεσης; Ο μαθητής δανείζεται μια δεκάδα από τις 5 και έτσι μετατρέπει το 53 σε 4 δεκάδες και 13 μονάδες. Τώρα μπορεί πολύ εύκολα να αφαιρέσει από το 13 το 9 και στη συνέχεια τη 1 δεκάδα από τις 4.

 5  3
 4 13
-1  9

Β) Να προηγηθεί ένα παιχνίδι για να συνηθίσουν να δανείζονται και να επιστρέφουν κυβάκια στον γείτονα.
Το παιχνίδι που έχω σκεφτεί είναι το εξής, αν και εσείς πάντα μπορείτε να σκεφτείτε κάτι καλύτερο:
Το ένα παιδί στο θρανίο του έχει π.χ. 15 κυβάκια, ενώ ο διπλανός του έχει εκατό. Ζητάμε από το πρώτο παιδί να φτιάξει λόγου χάρη 5 στήλες από έξι κυβάκια. Αν δεν τον φτάνουν μπορεί να δανειστεί από τον γείτονά του. Μόλις το καταφέρει φυσικά θα πρέπει να επιστρέψει τα δανεισμένα κυβάκια στον διπλανό του. Μετά από κάποιες προσπάθειες τα παιδιά αλλάζουν ρόλους.

Αφού προηγηθεί για κάποια ώρα το παιχνίδι, αμέσως μετά βάζουμε στα παιδιά το ακόλουθο πρόβλημα: Κάθε ομάδα έχει μπροστά της 53 κυβάκια – 5 δεκάδες και 3 μονάδες – και πρέπει να αφαιρέσει 19 κυβάκια. Πιο πέρα υπάρχει ένα δοχείο του γείτονα με αρκετά κυβάκια. Οι 5 όμως δεκάδες είναι σκεπασμένες με ένα μαγικό κουτί. Για να απομακρυνθεί το κουτί πρέπει πρώτα να κάνουν την αφαίρεση με τις μονάδες. Πώς θα γίνει αυτό αφού δεν μπορούν να δανειστούν μια δεκάδα από τις πέντε και να τη μετατρέψουν σε μονάδες όπως υπαγορεύει ο αγγλοσαξονικός τρόπος αφαίρεσης;

Μ’ αυτόν τον τρόπο ευελπιστούμε κάποια ομάδα να κάνει ό,τι και στο παιχνίδι που προηγήθηκε και έτσι να φύγει το μαγικό κουτί και να αφαιρέσουν και τις δεκάδες.

Εννοείται φυσικά πώς όποιον τρόπο και να ακολουθήσετε η εξάσκηση είναι αναγκαία. Αυτό που κερδίζετε είναι πως οι μαθητές σας θα καταλαβαίνουν τι κάνουν.

18 σχόλια:

Νερένια είπε...

Καλησπέρα, συνάδελφε!

Κάτι τέτοια είναι που με κάνουν συνήθως να αποφεύγω τις μικρές τάξεις. :-)

Πάντως από τις ελάχιστες φορές που δίδαξα για πρώτη φορά την κάθετη αφαίρεση με κρατούμενο ως πιο εύληπτο από τα παιδιά και πιο γρήγορο τρόπο βρήκα τον αγγλοσαξωνικό. Έχει το πλεονέκτημα να μη μιλάμε για δανεισμό και επιστροφή των "δανεικών" παρά για "μεταμόρφωση" μιας δεκάδας σε δέκα μονάδες. Έτσι οι μεταβολές γίνονται μόνο στο μειωτέο και τα παιδιά μαθαίνουν την αφαίρεση πιο εύκολα και καταλαβαίνουν γιατί κάνουν ό,τι κάνουν. Σημειώνω εδώ πως σ' αυτόν τον τρόπο είναι καλύτερο να μη μιλήσουμε για "δανεισμό", καθώς αυτά που δανείζονται οι μονάδες δε φαίνεται να τα επιστρέφουν πουθενά.

Odysseas είπε...

Συμφωνώ μαζί σου, Νερένια, πως πιο κατανοητός είναι ο αγγλοσαξονικός τρόπος αλλά έχει και τα όριά του. Λόγου χάρη:

105 - 59, 30.006 - 9.908 κ.α.

Σ' αυτές τις περιπτώσεις τα πράγματα δυσκολεύουν. Απεναντίας η γυναίκα μου που δίδαξε την αφαίρεση με τον τρόπο που αναφέρω (βλέπε άμεση διδασκαλία) τα πιτσιρίκια ανταποκρίθηκαν πολύ καλά. Πήρε φυσικά κάποιον χρόνο. Εννοείται. Μόνο τα ΔΕΠΠΣ δεν το καταλαβαίνουν αυτό. Δε χρειάστηκε όμως ούτε καν να αναφέρει τον αγγλοσαξονικό τρόπο. Χαρακτηριστικά σου αναφέρω πως τα μικρά σηκώνονταν στον πίνακα και έλεγαν:

"παίρνω δέκα μονάδες από τον γείτονα"

και

"δίνω πίσω τη μια δεκάδα"

Πιστεύω πως μ' αυτόν τον τρόπο ξεπερνιούνται οι δυσκολίες που αναφέρεις και που ξέρουμε όλοι μας.

sterzidi είπε...

Άλλη μία εξαιρετική ιδέα. Διακρίνω δύο διαστάσεις που τις αγνοούμε, λόγω έλλειψης χρόνου, από τη διδασκαλία. Πρώτα από όλα το παιχνίδι/δραματοποίηση. Η βιωματική διδασκαλία είναι πάντοτε πιο αποτελεσματική.
Δεύτερο η φυσιολογική πορεία από το συγκεκριμένο στο αφηρημένο.
Προσωπικά δε με ενοχλεί ο αγγλοσαξωνικός τρόπος αρκεί να τον δεις ως ισότιμο και το παιδί να επιλέξει το τρόπο που το εξυπηρετεί.
Οι δυσκολίες που αναφέρεις ξεπερνιούνται με την προσεκτική ανάθεση ασκήσεων. Αφού εξοικειωθούν οι μαθητές με το συγκεκριμένο τρόπο τους εισάγεις στα προβλήματα επίλυσης με το συγκεκριμένο τρόπο.
Μπράβο σας, πολύ ωραία ιδέα.

Sofia είπε...

Πολύ καλή η προσέγγιση του θέματος...εγώ διδάσκω τον αγγλοσαξονικό τρόπο, μου φαίνεται πιο απλός και κατανοητός για τα παιδιά. Αυτό που πρέπει όντως να καταλάβουμε ότι οι πράξεις που για μας είναι αυτονόητες, δεν είναι τόσο εύκολες για όλα τα παιδιά

Odysseas είπε...

Βασικά προσπαθώ να βρω κάποιον τρόπο να διδάξω τον κλασικό αλγόριθμο της αφαίρεσης αποφεύγοντας την παπαγαλία και ακολουθώντας τις βασικές αρχές της Διδακτικής των Μαθηματικών. Δεν ξέρω όμως αν μπορεί να εφαρμοστεί στα παιδιά με Μαθησιακές Δυσκολίες στα Μαθηματικά. Μπορείς να το δοκιμάσεις και να μου πεις.

Stathor είπε...

Με βοήθησες πολύ ! είμαι φοιτητής στο ΠΤΔΕ στην Κρήτη και δίνω μαθηματικά..! Αλλά δεν το 'χω και πολύ..! Πολύ κατανοητά αυτά που λες !

Odysseas είπε...

Σου εύχομαι καλή επιτυχία!

Μυρτώ είπε...

Είμαι φοιτήτρια παιδαγωγικού τμήματος. Θέμα στα μαθηματικά α' εξαμήνου είχαμε το εξής: Γιατί ( π.χ στην αφαίρεση: 45-18), ενώ "δανειζόμαστε" μια δεκάδα από το 45 "επιστρέφουμε" στο 1. Ίσως να μην διατύπωσα πολύ καλά την εκφώνηση αλλά κάπως έτσι ήταν... Τι θα μπορούσαμε να απαντήσουμε?

Ελένη Μπέη είπε...

Η Μυρτώ θέτει, νομίζω, την άλλη διάσταση του ζητήματος. Ότι, δηλαδή, όλοι μας έχουμε μάθει να κάνουμε αφαίρεση (τον αλγόριθμο της αφαίρεσης, δηλαδή), αλλά κανείς μας δεν ξέρει γιατί κάνει αυτό που κάνει (εξαιρουμένων, βέβαια, των μαθηματικών).

Προσωπικά η σχέση μου με τα μαθηματικά υπήρξε πολύ καλή ήδη από τα μαθητικά μου χρόνια, ωστόσο κι εγώ εξακολουθώ να μην μπορώ να απαντήσω στην ερώτηση που θέτει η Μυρτώ και την οποία θέτουν αργότερα και τα παιδιά, όταν δηλαδή περάσουμε πια στη διδασκαλία του σύντομου τρόπου της αφαίρεσης με κρατούμενο.

Ο τρόπος που προτείνεις, Οδυσσέα, βοηθά τα παιδιά να κατανοήσουν πως αφού δανείζονται χρειάζεται και να επιστρέψουν αυτά που δανείστηκαν. Δεν εξηγεί όμως γιατί ενώ δανείζονται από τις δεκάδες του μειωτέου επιστρέφουν τα δανεικά στις δεκάδες του αφαιρετέου. Για μένα αυτό είναι το ακατανόητο για τα παιδιά, αλλά και για σχεδόν το σύνολο των συναδέλφων που κανείς ποτέ δεν ξέρει πώς να απαντήσει στη σχετική ερώτηση που πάντα τίθεται από τα παιδιά.

Και καμιά φορά αναρωτιέμαι αν είναι και τόσο τραγικό που ο σύντομος τρόπος της αφαίρεσης (κι αργότερα της διαίρεσης) μαθαίνονται μηχανιστικά μεν, αλλά μαθαίνονται. [Ε, μην το πάρεις και τόσο τοις μετρητοίς αυτό. Απλώς προβληματίζομαι λιγάκι].

Odysseas είπε...

Ελένη Μπέη,

τραγικό δεν είναι να μαθαίνονται παπαγαλία ο αλγόριθμος της διαίρεσης και της αφαίρεσης, τραγικό είναι να κυριαρχεί αυτός ο τρόπος διδασκαλίας σε όλα τα μαθηματικά.

Στο θέμα μας τώρα. Ας ξεχάσουμε για μια στιγμή τον αλγόριθμο που ξέρουμε όλοι μας. Έχουμε την αφαίρεση 63 - 28, την οποία θέλουμε να την κάνουμε κάθετα. Ας ξεκινήσουμε:

Προφανώς δεν μπορούμε να αφαιρέσουμε από 3 μονάδες 8. Τι να κάνουμε; Γιατί να μη μετατρέψω το 3 σε 13, δίνοντας μία δεκάδα; Αν το κάνω αυτό η αφαίρεση είναι πολύ εύκολη και βρίσκουμε αποτέλεσμα 5 μονάδες.

Το σημείο αυτό θέλει προσοχή. Εφόσον βάλαμε 10 μονάδες στο 3 τότε ο μειωτέος δεν είναι πια 63 αλλά 73! Του δώσαμε και μια δεκάδα ακόμα. Άρα πρέπει να βγάλουμε πάλι αυτή τη δεκάδα που προσθέσαμε για να ξαναγίνει 63. Έτσι δεν πρέπει να κάνουμε;

Μόλις το κάνουμε αυτό αφαιρούμε και τις 2 δεκάδες από τις 6 του μειωτέου και τελειώσαμε!

Στο σχολείο αυτήν την έξτρα δεκάδα δεν την βγάζουμε πρώτα,όπως έκανα εγώ τώρα. Αντίθετα την προσθέτουμε στις δεκάδες του αφαιρετέου (2 + 1 = 3) και αφαιρούμε κατευθείαν 3 δεκάδες, αντί για 1 στην αρχή και 2 μετά.

Μυρτώ,

δε νομίζω να το έχεις διατυπώσει καλά το ερώτημα. Μάλλον όμως η παραπάνω απάντηση σε καλύπτει.

Πού σπουδάζεις;

Ελένη Μπέη είπε...

Σ' ευχαριστώ για την απάντηση στο σχόλιό μου, Οδυσσέα.

Και βέβαια έτσι πρέπει να κάνουμε.

Τελικά το συμπέρασμα είναι πως η αφαίρεση είναι μια πράξη που απαιτεί πολλή δουλειά προκειμένου να οδηγήσουμε τα παιδιά στην ουσιαστική κατάκτησή της. Το κακό είναι πως η συμπίεση της ύλης των μαθηματικών στην πρώτη και τη δευτέρα τάξη ελάχιστα περιθώρια αφήνει για κάτι τέτοιο. Αλλά οι περισσότεροι από εμάς καταλήγουμε σε πρώτης τάξεως αλχημιστές εξοικονομώντας χρόνο πότε από εδώ πότε από εκεί για να κάνουμε το κάτι παραπάνω διευκολύνοντας και τα παιδιά και εμάς τους ίδιους, μια και μια τάξη που τα παιδιά της κατακτούν τη νέα γνώση προοδεύει καλύτερα.

Odysseas είπε...

Η γυναίκα μου το έχει δοκιμάσει στη Β΄ και πιάνει. Δεν τρώει πολύ χρόνο. Κερδίζεις χρόνο για την ακρίβεια. Γι' αυτό το λόγο το σκέφτηκα. Δεν ξέρω βέβαια αν το έχεις δοκιμάσει κι εσύ. Αν το έχεις δοκιμάσει, πες μου τις εμπειρίες σου. Είναι σημαντικές.

Μυρτώ είπε...

Το ερώτημά μου είναι γιατί ενώ δανειζόμαστε από τις δεκάδες του μειωτέου επιστρέφουν τα δανεικά στις δεκάδες του αφαιρετέου.... Η Ελένη Μπέη κατάλαβε ακριβώς αυτό που εννοούσα. Απλά και στην σχολή η εκφώνηση ήταν αδιευκρίνιστη εντελώς... Ίσως τώρα να την διατύπωσα καλύτερα... Στο παιδαγωγικό Πατρών σπουδάζω...

Odysseas είπε...

Γεια σου, Μυρτώ.

Κι εγώ και η γυναίκα μου στην Πάτρα σπουδάσαμε. Πρέπει να τελείωσες το πρώτο έτος. Υποθέτω ότι η απάντησή μου δε σε ικανοποίησε. Μια παρατήρηση που έχω να κάνω είναι ότι δε δανειζόμαστε κάποια δεκάδα από τις δεκάδες του μειωτέου. Αυτό γίνεται στην αγγλοσαξονική αφαίρεση. Στην αφαίρεση 63-28 δεν παίρνουμε μια δεκάδα από τις 6. Δεν τις πειράζουμε καθόλου. Μένουν 6, δε γίνονται 5. Απλά προσθέτουμε μία δεκάδα και ο αριθμός από 60+3 (ο μειωτέος δηλαδή που ήταν 63) γίνεται 60 και 13 (δηλαδή έχουμε πλέον τον αριθμό 73). Τη δεκάδα αυτή δεν την παίρνουμε από κάπου. Αυθαίρετα την προσθέτουμε εμείς στις μονάδες για να κάνουμε τη δουλειά μας. Αυτό το κόλπο γίνεται και αλλού στα μαθηματικά. Να προσθέτεις κάτι και να το αφαιρείς ταυτόχρονα.

Στη συνέχεια επιστρέφουμε αυτή τη δεκάδα. Γιατί; Ο μειωτέος ήταν 63 όχι 73. Με τη δεκάδα που του προσθέσαμε όμως έγινε 73. Αν δεν την αφαιρέσουμε τότε το αποτέλεσμα δε θα είναι 35 (63-28=35) αλλά 45 αφού η αφαίρεση θα είναι 73-28=45. Μην ξεχνάς προσθέσαμε μια δεκάδα στις μονάδες. Για να ξαναγίνει 63 πρέπει να τη βγάλουμε. Και προφανώς αφού τελειώσαμε τις πράξεις στις μονάδες οφείλουμε να τη βγάλουμε από τις δεκάδες. Βγάζουμε επομένως τις δύο δεκάδες του αφαιρετέου από τις 6 του μειωτέου και βγάζουμε ακόμα μία, αυτή που προσθέσαμε εμείς αυθαίρετα, για να ξαναγίνει 63 το 73. Και για να μην κάνουμε δύο αφαιρέσεις συνεχόμενα λέμε ότι βγάζουμε κατευθείαν 3 δεκάδες αφού 2+1=3.

Αν μπορείς να μου πεις τι ακριβώς δεν καταλαβαίνεις, πες το ελεύθερα.

el1 είπε...

όταν κάνουμε την αφαιρεση 45-19 εφοσον το 9 δεν αφαιρείται απο το 5 παιρνουμε μια δεκαδα απο τις 4 που εχουμε την κανουμε μοναδες και εχουμε τωρα 3 δεκαδες και 15 μοναδες και αφαιρουμε τα ομοια δηλαδη 9 απο 15 μοναδες και 1 απο 3 δεκαδες και προκύπτει το αποτελεσμα. εγω βεβαια ειχα διδαχθει τον αλλον τροπο. στον δευτερο τροπο σαν να "μαζευουμε" ολα αυτα που πρεπει να βγαλουμε δηλαδή αρχικά πηραμε μια δεκαδα απο τις 4 και την μετατρεψαμε σε μοναδες οποτε και μπορεσαμε να κανουμε την αφαιρεση των μοναδων μετα συγκεντρωνουμε όλες τις δεκάδες που πρεπει να αφαιρεθούν μια που επρεπε και αλλη μια που δανειστήκαμε συνολικα δυο δεκαδες βγαζουμε απο τις τεσσερις ...οσον αφορα τον αγγλοσαξωνικό τροπο δεν εχει ορια απλα μπορει να δανειστούμε εκατονταδα να την μετατρεψουμε σε δεκαδες ή μοναδες πραγμα που σε καποιες περιπτωσεις θελει εξοικείωση..ελπιζω να βοήθησα

el1 είπε...

Γεία σας.
Έστω η αφαίρεση 45-19.
Στον αγγλοσαξωνικό τρόπο δανειζόμαστε μια δεκάδα από τις 4 την μετατρέπουμε σε μονάδες κι εχουμε 3 δεκάδες και δεκαπεντε μοναδες και αφαιρουμε τα ομοια 9 απο 15 και 1 δεκαδα απο τις 3.

στον άλλο τρόπο σαν να "μαζευουμε" οσα πρεπει να βγαλουμε δηλαδη πάλι δανειζομαστε μια δεκαδα απο τις 4 για να κανουμε την αφαιρεση των μοναδων ομως μετα λεμε 1 δεκαδα που δανειστηκα και πρεπει να την βγαλω και αλλη μια του αφαιρετεου μου συνολικα δυο..

Svetlana είπε...

200-25=

Αφαίρεση με τον αγγλοσαξονικό τρόπο.

Από το 0 δεν μπορούμε να αφαιρέσουμε το 5. Κανονικά, για να το κάνουμε, θα παίρναμε από τη στήλη των δεκάδων του μειωτέα μια δεκάδα και την προσθέταμε στις μονάδες. Όμως, στη στήλη των δεκάδων του μειωτέα είναι το 0. Τότε, εξακολουθώντας να βρισκόμαστε στον μειωτέα, παίρνουμε μια εκατοντάδα. Πάνω σε αυτήν βάζουμε μια τελίτσα για να θυμόμαστε ότι πήραμε μια εκατοντάδα . Δεν μεταφέρουμε όμως την εκατοντάδα απευθείας στις μονάδες, δηλαδή 100-5. Κάνουμε το εξής: επιστρέφοντας προς τις μονάδες, στον μειωτέα, αφήνουμε 9 δεκάδες στη στήλη των δεκάδων (διαγράφουμε το 0 και γράφουμε το 9) και μια δεκάδα στη στήλη των μονάδων. Τώρα, 10-5=5. Στη στήλη των δεκάδων του μειωτέα είναι 9 δεκάδες. 9-2=7. Στη στήλη των εκατοντάδων έμεινε μια εκατοντάδα, δηλαδή 1. Τη μεταφέρουμε κάτω.

Ανώνυμος είπε...

Βοηθάει πολύ

https://www.youtube.com/watch?v=Buyaqe_L5-Y